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Abstract

Human languages are often claimed to funda-
mentally differ from other communication sys-
tems. But what is it exactly that unites them as
a separate category? This article proposes to
approach this problem — here termed the Zip-
fian Challenge — as a standard classification
task. A corpus with textual material from di-
verse writing systems and languages, as well
as other symbolic and non-symbolic systems,
is provided. These are subsequently used to
train and test binary classification algorithms,
assigning labels “writing” and “non-writing”
to character strings of the test sets. The perfor-
mance is generally high, reaching 98% accu-
racy for the best algorithms. Human languages
emerge to have a statistical fingerprint: large
unit inventories, high entropy, and few repeti-
tions of adjacent units. This fingerprint can be
used to tease them apart from other symbolic
and non-symbolic systems.

1 Introduction

“If a Martian scientist [...] received from Earth
the broadcast of an extensive speech [...] what
criteria would [...]determine whether the reception
represented the effect of an animate process
on Earth, or merely the latest thunderstorm on
Earth?” (Zipf, 1936, p. 187)

Zipf’s ideas — condensed in the above quote — have
spurred a whole research paradigm: the study of
statistical laws of language. These have emerged
as the best candidates for universals of language
(Ferrer-i-Cancho, 2005, 2007; Bentz and Ferrer-i-
Cancho, 2016; Takahira et al., 2016; Debowski,
2020; G. Torre et al., 2021; Tanaka-Ishii, 2021;
Petrini et al., 2023). Beyond languages, many
other systems have been found to follow similar
statistical laws — to the extent that their “meaning-
fulness” has been sometimes called into question
(Miller, 1957; Li, 1992; Suzuki et al., 2005). Most
recently, experimental investigations have shown

that Zipfian distributions facilitate learning of lin-
guistic and visual input (Lavi-Rotbain and Arnon,
2021, 2022, 2023), that they arise from human cog-
nitive biases (Shufaniya and Arnon, 2022), and
that they help with learning new word-referent
mappings (Wolters et al., 2023). In this sense, such
statistical laws are quite literally “meaningful”.

However, the challenge posed in the quote
above is still only partially addressed by research
into statistical laws. Namely, a statistical pattern
might universally occur across languages, but this
does not entail that it is a unique feature of lan-
guages. The Zipfian Challenge is ultimately the
search for a statistical fingerprint: a feature, or
set of features, which uniquely identify human lan-
guages. This is related to an age-old controversy
of the language sciences: What makes human lan-
guage special — if anything?

This challenge is here broken down into a stan-
dard classification task. Assume you are provided
with strings of characters:!

AALLAQQAASIUTA

1
SSSSCSOFSPPPFPP M

Is there an algorithm which robustly classifies
these into “writing” and “non-writing”? — If yes,
how? — If no, why not?

Beyond pure scientific curiosity, there would
be concrete applications for such an algorithm:
a) cleaning of contaminated corpora, especially
when large and automatically crawled (Blevins
and Zettlemoyer, 2022); b) measuring similarity
of undeciphered scripts to known writing systems
in order to help decipherement (Rao et al., 2009,
2010; Lee et al., 2010; Sproat, 2014); c) providing
tools to systematically compare human language
with animal communication (Kershenbaum et al.,
2016).

'The first string is the beginning of the UDHR in Kalaal-
lisut (West Greenlandic), the second is a transliteration of
symbols in a wheather forecast.
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Figure 1: Number of files per subcorpus (left panel). Logarithm of the number of UTF-8 characters over files in a
given subcorpus (right panel). Note that the natural logarithm of 50k is roughly 11, while for 500 this is roughly 6.

In the following, a corpus of character strings
labelled as “writing” and “non-writing” is intro-
duced in Section 2. Given this corpus, a sampling
procedure is defined to retrieve strings of prede-
fined lengths (10, 100, 1000). Subsequently, fea-
tures from quantitative linguistics and information
theory are described an calculated on the strings
(Section 3). A series of classification algorithms
are trained on a subset of the feature values. Sec-
tion 4 then gives the results in terms of perfor-
mance of the algorithms on the test sets. Section 5
discusses the results with regards to the original re-
search question of a statistical fingerprint, as well
as some follow-up questions which arise from the
results.

2 Data

The data stems from a corpus of overall 377 files,
split into “writing” (170 files) and “non-writing”
(207).> The standard definition of writing is ap-
plied here. It refers to the tight link between spo-
ken language structure and the graphemes repre-
senting it: “Broadly defined, writing represents
speech. One must be able to recover the spoken
word, unambiguously, from a system of visible
marks in order for those marks to be considered
writing,” (Woods, 2010, p. 18). However, some
transcriptions of sign languages are also included
here. Arguably, unique structural features of a
given sign language can be identified in a transcrip-

ZFiles and code can be found at https://github.com/
christianbentz/NaLaFi.

tion system, in parallel to spoken language in its
graphical form.

2.1 Writing

The writing files in this corpus consist of 50 par-
allel translations of the Universal Declaration of
Human Rights (UDHR),? transcriptions of interac-
tions in American Sign Language (ASL) and Sign
Language of the Netherlands (SLN) according to
the Berkeley system, as well as transliterations of
ancient languages (Akkadian, Cretan Hieroglyphs,
Proto-Elamite, Prakrit, and Sumerian).*

2.2 TeDDi sample

To increase the diversity of genres, registers, and
modalities (spoken vs. written) for modern day
languages beyond the UDHR, we furthermore
draw 100 files randomly from the TeDDi (Text
Data Diversity) sample (Moran et al., 2022). It
includes more than 20K texts from overall 89 lan-
guages and 15 writing systems, and aims to max-
imize the diversity of families and areas repre-
sented.

2.3 Non-writing

The files classified as “non-writing” are further
subdivided into songs of different bird species
(animal), DNA strings (natural), python code

3These were chosen to maximize the diversity of scripts.
There are 36 different scripts in this sample according to the
ISO 15924 standard.

4Mostly retrieved from https://cdli.mpiwg-berlin.
mpg.de/.
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(pycode), heraldics (heraldics), weather sym-
bols (weather), morse code (morse), and proto-
cuneiform (procunei). Examples are given in Ta-
ble 1.

Bird song transcriptions of five different species
(black-headed grosbeak, chickadee, Cassin’s
vireo, California thrasher, and zebra finch) are col-
lected from an online database (Bird-DB).7 It pro-
vides a “text” coding of recurrent phrases, identi-
fied by short pauses, and annotated with regular
UTF-8 character strings in Praat (Arriaga et al.,
2015).

Heraldics here refers to the description of her-
aldry (coats of arms) according to the so-called
Blazon system. It has its own syntax, and uses
a mixture of English and French words. It is
here considered “non-writing” following the dis-
cussion in Sproat (2023). However, it is a border-
line case. The usage of English words, inflectional
morphemes, and noun phrase structures partially
link it to the spoken language.

Morse code is another borderline case.
Graphemes of actual writing are here recoded
into three morse characters (plus pause character).
Hence, the actual writing can be recovered, and
the underlying spoken language can be identified.
However, this is a two-stage process. If we ac-
cept morse code as writing, we also have to ac-
cept, for instance, binary code. Such artificial
coding schemes are here rather classified as “non-
writing”.

Proto-cuneiform is strictly speaking also “non-
writing”. Take, for instance, the transcription of
a tablet from the Uruk III period (c. 3200-3000
BC)’ as given in Table 1. NI14 and NI9 are tran-
scriptions of sumerograms representing numbers
(which are repeated several times for enumeration
purposes), SZE~a is an iconic sign which stands
for the concept of “barley”, and LU2 for the con-
cept of “person”. In a strict sense, we do not know
whether the scribe thought of the Sumerian spoken
words for “barley” and “person” when they pro-
duced these iconic signs. They could have spoken
any other language. As a consequence, the lan-
guage feature of this tablet is assigned the value
“undetermined” in the database.

Finally, two further sets of “non-writing” files
are generated by a) randomly drawing up to 48 dif-

6

Shttp://taylor@.biology.ucla.edu/birdDBQuery/
SThanks to one of the reviewers for raising this issue.

"https://cdli. mpiwg-berlin.mpg.de/artifacts/
5353

ferent characters from a uniform distribution, and
b) randomly shuffling the characters of the “writ-
ing” files. Note that the latter process does not
impact certain text statistics, e.g. the frequency
distributions of characters. An overview of the file
counts in this corpus, as well as distributions of file
lengths in UTF-8 characters are given in Figure 1.

3 Methods

3.1 Preprocessing

The 377 files are preprocessed consistently to re-
move special characters which are used as anno-
tations, rather than representing genuine informa-
tion of the symbolic systems. For example, in
Sumerian transliterations, curly brackets indicate
so-called determinatives, as in {d/nansze, where
d represents the star shaped sumerogram indicat-
ing that the next sumerogram is to be interpreted
as the name of a deity, namely, the goddess nan-
sze.® Note that the curly brackets are here already
an interpretation of the person transliterating the
original sumerograms, i.e. an annotation. The
UTF-8 characters removed from all files include
the tab character, as well as ‘{’, ‘}’, ‘C, )", ‘[’ ‘1",
‘+’, and ‘“*’. In fact, these characters also often
cause problems in later processing steps, which
is another — more practical — reason to remove
them. Examples of preprocessed character strings
are given in Table 1.

3.2 Sampling

While the numbers of files in the “writing” versus
“non-writing” categories are relatively balanced
(170 versus 207), the average file lengths in terms
of UTF-8 characters differ widely. These range
from c. 100 characters in the case of weather sym-
bols, to c. 50k characters in the case of DNA (see
also Figure 1, right panel). In most cases, this is
due to data availability issues.

To alleviate this problem, two strategies are ap-
plied: Firstly, a maximum number of 10 strings
of characters is extracted from each file. Sec-
ondly, the lengths of strings (in terms of number
of UTF-8 characters) are held constant: 10, 100,
1000. We thus achieve a consistent comparison of
strings of a given length across the different types
of writing and non-writing systems. Also, these
lengths are chosen with potential later applications

8We here use the transliterations of sumerograms into
Latin script. Mapping these back to UTF-8 sumerograms is
currently not feasible.
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Corpus Subcorpus File ID Example
Writing Ancient akk 0001 Sum-ma a-wi-lum ba-wi-lam u-ub-bi-ir-ma
Signlang ts1_0001 -clVP-cITL-golVP_TOP-pstSTRmount-cl
UDHR cmn_0001  FFE S TR ARG R A E A 8™ Mo
eng_0001 Preamble Whereas recognition of the inherent
kal_0001 AALLAQQAASIUTA taqginassusermik inuup
kor 0001 M ZREJF FHLY IR EAHH FF
TeDDi eng_nfi_242 It’s not supposed to be like this.It’s time.
Non-Writing Animal bhg_0001 uj kd ro su sv sw sx gf jr dw kd tc jt ag ta
Heraldics bla_0001 Or, a lion rampant within a double tressure
Morse moc_0001 phh_pppp_p_hp_s_pp_hp_s_h_pppp_p_s_hphp
Natural (DNA) dna_0001 GGTAGTTAGGGTCTGAAAAAGATTTTGCG
Proto-Cuneiform prc_0001 N14[...] NI9 N19 N19 SZE~a LU2 MUD3~d
Python code pyc_0001 class Person: pass p = Person() print(p) class
Random ran_10 hihhe bh fif cd gbgdiiigc ghigbbg af icegeebiifg
Shuffled eng_0001 swr a j e eitimii hfeooa ti i d gs sfi roeviebg ep
Weather wsy_0001 SWCCSSSSSSSSSSCSOFSPPPFPPFPP

Table 1: Examples of characters strings of genuine writing systems as well as systems here classified as non-

writing.

in mind. For example, when aiming to classify un-
deciphered scripts, or comparing human commu-
nication with animal communication, the strings
available are often rather limited in length, in some
cases just a couple hundred characters. Methods
which need large amounts of data are not useful
in this context. The sampling procedure is further
illustrated in Appendix A.

Given this sampling procedure, we arrive at sev-
eral thousand character strings for each predefined
length (Table 2). For each of these strings, values
are calculated for four quantitative features out-
lined in the following.

3.3 Features

The focus is here on quantitative features which
have been explicitly proposed to distinguish differ-
ent natural languages, and other symbolic systems
(e.g. in Rao et al., 2009, 2010; Lee et al., 2010;
Sproat, 2014; Bentz et al., 2017). In particular, the
measures chosen are the type-token ratio (TTR),
the unigram entropy (H), and the entropy rate (h)
of units (i.e. UTF-8 characters), as well as the rep-
etition rate of adjacent units (R?). The exact defini-
tions for these measures are given below.

3.3.1 Type-token ratio (TTR)
The type-token ratio is defined as

C

TTR = —~—,
Zicz1 fz

2

where C' is number of character types in an “alpha-
bet” A, such that C' = |A|, and f; is the token
frequency of a given character type c;.

3.3.2 Unigram character entropy (H)

Compared to TTR, the unigram character entropy
is a more nuanced measure of diversity, reflecting
the distribution of units. In general, it is defined as
(Cover and Thomas, 2006, p. 14)

H(X) ==Y p(x)logy p(x),

zeEX

3)

where X is a discrete random variable, X is the al-
phabet, and p(z) is the probability of a given type
of the alphabet. In our case, we estimate the en-
tropy with the maximum likelihood or ‘plug in’
method for a given string of characters S, such that

C
H(S) == Plei) logy plei),

i=1

“)

where S is assumed to be an i.i.d discrete ran-
dom variable drawn from the alphabet A, and
p(c;) is the estimated probability, i.e. the rela-
tive frequency of a character f; in S. The uni-
gram character entropy takes values in the range
[0, 00]. For an example sequence abcabcabc we
have H(X) = (1/3 x logy(1/3)) x 3 = 1.58
bits/unit.



3.3.3 Entropy rate (h)

While TTR and unigram entropy only take into
account the frequencies/probabilities of individual
characters — independent of their co-text — the en-
tropy rate is defined for a stochastic process { X}
reflecting the concatenation of random variables,
which might or might not be independent of one
another. In general, the entropy rate is defined as
(Cover and Thomas, 2006, p. 74)

1
h()() = lim *H(X17X27X37...

This can be seen as the per symbol entropy growth.
Note that in the case of characters in natural lan-
guage texts, we have co-occurence patterns which
limit the entropy growth to a certain extent. To
estimate the entropy rate we turn to an estimator
proposed in Gao et al. (2008), and implemented in
Bentz et al. (2017). It is defined as

n

A 1 log, i
h(s) = =3 =2, ©)
i=2 g

where n is the length (number of characters) in
a given string S, and L; is the length (+1) of
the longest contiguous substring starting at posi-
tion ¢ which is also present in ¢ = 2 to ¢ — 1.
The entropy rate also takes values in the range
[0, 00]. For our regular abcabcabc string we get
h = 0.84 bits/character. Notice that this is lower
than the value for the unigram character entropy
(1.58 bits/character). This is because the same sub-
string abc is repeated several times. In a sense,
this entropy rate estimator “penalizes” long sub-
strings of repetitions when calculating the entropy
of a given string.

3.3.4 Repetition rate (R)

Finally, the repetition rate (for adjacent charac-
ters) is proposed in Lee et al. (2010) and Sproat
(2014) as an alternative to entropy estimation for
teasing apart writing from non-writing. The gen-
eral idea is that consecutive repetitions of charac-
ters are dispreferred in genuine writing systems —
probably reflecting the avoidance of adjacent rep-
etitions of phonemes in spoken languages. While
there are some extreme examples like Schifffahrt
in Standard German, we rarely encounter more
than two repetitions of the same character in ad-
jacency, and even these are relatively infrequent.
The repetition rate is calculated as

r

== 7 (7)
Zicz1 fz -1

Length (Chars.) Overall Training Test

10 3741 2543 1198
100 3223 2194 1029
1000 1832 1261 571

Table 2: Number of character strings of a given length
in the training and test sets.

where 7 is the number of adjacent repetitions of
characters c¢; in a given string, and the denomi-
nator is the possible number of adjacent repeti-
tions. R takes values in the range [0, 1]. In the
string abcabcabc we have zero adjacent repeti-
tions of the same character, while there could be
(3—1)+ (3—1)+ (3 —1) = 6 repetitions. The
repetition rate is then R = 0/6 = 0. For compar-
ison, in the string baccbcaab (which has the same
TTR and H as before), we have cc and aa as adja-
cent repetitions, and hence R = 2/6 = 0.33.

Overall, we thus have four vectors of feature val-
ues. The estimated values are visualized in Fig-
ure 2. Some general trends are already visible in
these panels. For instance, the marginal density
distributions of writing and non-writing overlap
considerably for the TTR, such that it will be hard
for a classification algorithm to distinguish these
in this dimension. For the repetition rate R (y-axes
on the right panels), on the other hand, the values
of writing cluster more strongly towards low val-
ues, and are more spread out for non-writing. In-
terestingly, the shuffied strings seem to move away
towards higher values in the R dimension com-
pared to the original writing strings. This suggests
that random shuffling of characters introduces sys-
tematically more adjacent repetitions than found
in real text.

3.4 Training and test sets

The feature values along with their labels (writing
vs. non-writing) are split into a training and test set
by the ratio 67% to %33. The resulting numbers
for the training and test sets per string length are
given in Table 2. The same training and test sets
are used for all algorithms.

3.5 Classification Algorithms
3.5.1 K Nearest Neighbors (KNN)

The KNN algorithm computes euclidean distances
for each data point in the test set with each data
point in the training set. It then classifies a given
target point in the test set based on a majority vote
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Figure 2: Distributions of feature values for strings of length 10, 100, and 1000 respectively. The main distinction
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of the class labels which the k neighbours nearest  distribution of data points.” The only hyperparam-
to the target point have. Ties are broken at ran-  eter to tune is k, which is here assumed to range in
dom. This is a non-parametric and fast classifica- between 1 and 10.

tion algorithm. It was proposed already in Fix and
Hodges (1952), and is still competitive today for

general classification problems such as the XOR °See leader board at https://paperswithcode.com/

task/classification (last accessed 29/06/2023).
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3.5.2 Logistic regression

Logistic regression is a parametric technique
which was widely used in statistical learning for bi-
nary classification before the advent of neural net-
works. It is still used today in experimental stud-
ies in psychology and psycholinguistics (Baayen,
2013). For binary classification using feature val-
ues, we first need to estimate the coefficients of the
logistic model, which is specified in our case as

POY=1)
1-PY=1)" (8
Bo + B1X1 + BaXo + B3X3 + B4 Xy,

logit(Y") = log(

where X7, ..., X4 are random variables represent-
ing the feature values, Y is the binary outcome
variable we want to predict, and (3, . . . , 34 are the
parameters (coefficients) of the model which are
learned (estimated) using the feature values and la-
bels of the training set. Once these parameters are
estimated, we use them for prediction of labels in
the test set given the formula

1 ©)
1+ e—(Bo+B1X1+B2Xo+Bs Xs+BaXa)

with the decision rule: if P(Y = 1) > 0.5, then as-
sign label “writing”, otherwise assign label “non-
writing”.

3.5.3 Support Vector Machines

A support vector machine (Cortes and Vapnik,
1995) uses the input vectors of the training set — in
our case (T7TR, TH, Th, TR) — to find the hyper-
plane with dimensions n — 1 (where n is the num-
ber of features, i.e. n — 1 = 3), which maximizes
the margins to the nearest data points (i.e. support
vectors). Data points in the test set are then clas-
sified according to the position of the hyperplane
established with the training set. If the training
data cannot be separated without error (which is
almost always the case), then instead the number
of errors is minimzed. As pointed out by Good-
fellow et al. (2016, p. 141), the original formu-
lation of SVMs is very similar to the logistic re-
gression model given in Equation 8. However, it
was subsequently shown that the so-called kernel
trick can be used to allow non-linear mappings.
The main hyperparameter is then the type of ker-
nel used. Here, the linear, radial basis, sigmoid,
and polynomial kernels are tested.

3.5.4 Multilayer Perceptrons (MLP)

Multilayer perceptrons (deep feedforward net-
works) are the archetype of deep learning (Bengio
et al., 2000; LeCun et al., 2015). In its simplest
form, a feedforward network for binary classifica-
tion consists of the input units (four in our case),
a single hidden unit, and an output unit. See Fig-
ure 3 (upper panel) for an illustration. Note that
this is mathematically equivalent to the logistic re-
gression model in Equation 8. Namely, the vector
of weights (w) — multiplied with the input values
of features (x) — is equivalent to the coefficients
(B1, ..., B4), and the bias (indicated in blue in the
figures) is equivalent to 5.

However, a crucial question is which hidden
layer architecture, activation function, error func-
tion, and backpropagation algorithm yield the best
results for a given data set. These are the hyper-
parameters to tune. Here, a search of the space of
possible architectures is performed by randomly
drawing natural numbers in the range [1, 4] for the
hidden layers, and numbers in the range [1, 5] for
the number of units in each hidden layer. The
maximal values are guided by local regression
analyses of model performance (F1 score) given
the depth and size of networks (see Appendix B).
Overall, one hundred random values are drawn for
the depth and size, yielding one hundred different
architectures (out of 5* = 625). Moreover, dif-
ferent activation functions (logistic, ReLLU, soft-
plus, tanh), error functions (SSE, cross entropy),
and backpropagation algorithms (Rumelhart et al.,
1986; Riedmiller and Braun, 1993; Hinton et al.,
2006) are considered.

4 Results

For all classification algorithms the accuracy, pre-
cision, recall, and F1 score on the test set are re-
ported alongside the respective hyperparameters.
A condensed overview of classification results are
given in Table 3. The best model overall is an MLP
trained on feature values of strings with 1000 char-
acters. It achieves an F1 score of 0.96, and an ac-
curacy of 98%. In other words, for the 571 strings
of the test set it assigns the correct label (writing
vs. non-writing) in 560 cases, erring only in 11
cases. This performance drops to 93% accuracy
when feature values of strings of length 100 are
supplied, and to 73% with strings of length 10.
The performance of the best KNNGs is very similar,
differing only by a max amount of 0.01. In gen-
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the architecture which performs best on strings of 100
characters.

eral, the KNN and MLPs show very similar perfor-
mance, while the performance of SVMs and logis-
tic regression models is lower across the board.

5 Discussion

Overall, the classification results suggest that the
Zipfian Challenge is indeed a solvable problem.
Namely, given strings of characters of length 100,
KNNs and MLPs reach performance values of
0.92 and 0.93 respectively. With 1000 charac-
ters, they are almost at the ceiling of performance.
In fact, it is questionable whether humans would
be able to correctly classify the respective strings
with 100% accuracy. Mind you that more than 36
different scripts and 90 different languages are rep-
resented in this data sample. It would be an inter-
esting project for future research to establish hu-
man performance on this task. In the following,
some further follow-up questions are briefly dis-
cussed.

5.1 Why do algorithms perform differently?

It is surprising to see a simple, non-parametric
classification algorithm like KNN outperform
other, much more complex algorithms such as lo-
gistic regression and SVMs, and perform on a par
with the best MLPs. This is certainly related to
the data set and problem at hand. The KNN has
no parameters to “learn” from the training data. It
directly assigns a label to a given vector of fea-
ture values by finding the vector of feature val-
ues closest to it in the training set. In compari-
son, the currently best MLP given in Figure 3 has
4x444x442x1 = 34 weightsand4+4+1 =9
biases to adjust. This amounts to overall 43 pa-
rameters to optimize in the “learning” process. In
fact, few of the deeper networks with three or four
hidden layers actually reach convergence with this
data. And when they converge, they do not neces-
sarily perform better than the simpler architectures
(see Appendix B).

5.2 Why do longer strings yield better results
than shorter strings?

The main reason for this is that the respective fea-
ture values have not converged for short strings
of length 10. For strings of length 100, they start
to converge in most cases, and at 1000 characters
they have converged across the board. The conver-
gence behavior of the different measures is given
in Appendix C.

5.3 Which is the best feature?

When feature value vectors are input separately
— rather than together — into the KNN algorithm
(with k£ = 1), then the repetition rate R performs
best for 100 characters (F1-score: 0.8), followed
by TTR (0.66), with unigram entropy and entropy
rate at only 0.63. For 1000 characters, R and
TTR are similar (0.83 and 0.81), again with en-
tropy measures yielding lower F1-scores (0.7 and
0.72). This squarely confirms the argument in
Sproat (2014), namely, that the repetition rate R
is better than entropic measures for distinguishing
writing from non-writing. However, if we remove
entropic measures for the best KNN at 100 char-
acters (kK = 5), then the performance drops from
0.92 to 0.82. So they still considerably contribute
to performance. For instance, for some natural lan-
guage writing, e.g. the Kalaallisut string AAL-
LAQQAASIUTA in Table 1, the repetition rate
can be relatively high due to writing conventions



Classifier Chars. Hyperparam. Acc. Prec. Rec. F1
Baseline (only TTR) 10 k=1 0.69 0.89 048 0.63
KNN 10 k=6 071 073 0.72 0.73
100 k=5 092 092 092 092
1000 k=7 098 098 092 0.95
LogRegr. 10 - 0.72 0.77 067 0.72
100 - 079 084 071 0.77
1000 - 093 095 075 0.84
SVM 10 kernel: linear 072 083 060 0.70
100 kernel: radial 0.88 0.87 0.90 0.89
1000 kernel: radial 092 1.00 0.70 0.82
MLP 10 hidden: 5, 4; tanh; SSE; rprop+ 0.73 0.78 0.69 0.73
100 hidden: 4, 4; tanh; SSE; rprop+ 093 093 092 0.93
1000 hidden: 4, 5, 2; tanh; SSE; rprop+ 0.98 0.99 0.94 0.96

Table 3: Classification results organised by number of characters and method. Only the best models (by F1 and
Accuracy) for each number of characters is given. The baseline is the KNN algorithm (k=1) with strings of 10
characters and only TTR as a feature for training and testing.

for long vowels (aa), lateral glides (ll), and ejec-
tives (qq). In such cases, the other measures will
help with correct classification.

5.4 How are the results influenced by
subcorpora?

The corpus of strings is not fully balanced. To
get an idea of the degree to which particular sub-
corpora influence the performance, they are re-
moved individually in a post hoc experiment with
the best KNN model (k = 5) for 100 characters.
The results are given in Appendix D. Generally,
classification results are robust to removal of sub-
corpora. The strongest decrease in performance
is associated with the removal of DNA (natural)
strings. These have generally low entropies, and
high repetition rates, and are hence easily classi-
fied as non-writing. The inverse effect holds for
shuffled data. Shuffling the characters of genuine
writing does not change the unigram entropy and
TTR, and only marginally changes the entropy rate
of strings. Hence, in this case, the repetition rate
is the only feature useful for identifying the result-
ing strings as non-writing. Removing the shuffled
strings increases the overall performance.

6 Conclusions

Compared to other symbolic and non-symbolic
systems, natural languages seem to exhibit a
unique fingerprint: relatively large unit invento-
ries, relatively high entropy, and relatively few
repetitions of adjacent units. This statistical fin-

gerprint can be used to identify written language
with high accuracy when more than 100 charac-
ters are provided. Interestingly, this seems to hold
not only for writing reflecting spoken language but
also for transcriptions of sign languages (though
only small samples of ASL and SLN were used
here). This suggests that humans have evolved the
capacity of encoding information with a diverse,
non-repetitive succession of units in three modali-
ties: speech, manual signs, and graphical codes. If
these results hold true, then it is not a single fea-
ture, and not a single modality, which defines hu-
man language, but a set of features related to rapid
information transmission in the face of space and
time limitations.
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